Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr Health Aging ; 26(10): 945-953, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36259583

RESUMO

OBJECTIVES: To evaluate the effect of L-carnitine (LC) in combination with leucine supplementation on muscle strength and muscle hypertrophy in aged women participating in a resistance exercise training (RET) program. DESIGN/SETTING/PARTICIPANTS: Thirty-seven out of sixty (38.3% dropout) healthy women aged 60-75 years (mean 67.6 ± 0.7 years) completed the intervention in one of three groups. One of the supplemented groups received 1 g of L-carnitine-L-tartrate in combination with 3 g of L-leucine per day (LC+L group; n = 12), and the second supplemented group received 4 g of L-leucine per day (L group; n = 13). The control group (CON group; n = 12) received no supplementation. INTERVENTION: All three groups completed the same RET protocol involving exercise sessions twice per week for 24 weeks. MEASUREMENTS: Before and after the experiment, participants performed isometric and isokinetic muscle strength testing on the Biodex dynamometer. The cross-sectional areas of the major knee extensors and total thigh muscles were assessed using magnetic resonance imaging. Fasting serum levels of insulin-like growth factor-1 (IGF-1), myostatin and decorin, and plasma levels of total carnitine (TC) and trimethylamine-N-oxide (TMAO) levels were measured. RESULTS: The 24-week RET significantly increased muscle strength and muscle volume, but the group and time interactions were not significant for the muscle variables analyzed. Plasma total carnitine increased only in the LC+L group (p = 0.009). LC supplementation also caused a significant increase in plasma TMAO, which was higher after the intervention in the LC+L group than in the L (p < 0.001), and CON (p = 0.005) groups. The intervention did not change plasma TMAO concentration in the L (p = 0.959) and CON (p = 0.866) groups. After the intervention serum decorin level was higher than before in both supplemented groups combined (p = 0.012), still not significantly different to post intervention CON (p = 0.231). No changes in serum IGF-1 and myostatin concentrations and no links between the changes in blood markers and muscle function or muscle volume were observed. CONCLUSIONS: LC combined with leucine or leucine alone does not appear to improve the effectiveness of RET.


Assuntos
Carnitina , Leucina , Treinamento Resistido , Feminino , Humanos , Carnitina/farmacologia , Decorina/metabolismo , Suplementos Nutricionais , Fator de Crescimento Insulin-Like I , Leucina/farmacologia , Força Muscular/fisiologia , Músculo Esquelético , Miostatina/metabolismo , Tartaratos/farmacologia , Pessoa de Meia-Idade , Idoso
2.
J Pharm Biomed Anal ; 186: 113258, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32294601

RESUMO

Oxylipins are a family of saturated and unsaturated fatty acids peroxidation products with bioactive properties. We have developed an improved method for the measurement of ex vivo oxylipin production by peripheral blood mononuclear cells (PBMCs) and neutrophils. We aimed to develop an analytical method to determine the production rates of polyunsaturated fatty acids (PUFAs), PUFA-oxylipin, and saturated-oxylipins by stimulated PBMCs and neutrophils based on solid phase extraction and HPLC-MS/MS technology. A UHPLC system coupled to a Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer was used to identify and quantify oxylipin production. For each oxylipin and PUFA their differential response was calculated with respect to a deuterated internal standard factor (ISF). To calculate oxylipin and PUFAs in the culture samples, the individual ISF was used for each oxylipin and PUFA with respect to the deuterated internal standard. PBMCs and neutrophils showed a different pattern of oxylipin production and fatty acid secretion. Lipopolysaccharide (LPS) did not stimulate oxylipin production or fatty acids secretion in PBMCs, whereas phorbol myristate acetate (PMA) stimulation increased the production rate of 5-HETE, 15-HETE, 15-HEPE, 17-DoHE, PGE2, AA, and DHA. LPS stimulation decreased 16-hydroxyl-palmitatte (16-OHPAL) production and DHA secretion in neutrophils, while PMA stimulation increased the production rate of AA and its derivate oxylipins, 5-HETE, 15-HETE, and PGE2. In conclusion, we have developed a new method to determine oxylipins derived from both saturated and unsaturated fatty acids in culture cell media. This method has enough sensitivity, and accuracy, to determine oxylipin production and fatty acid secretion by PBMCs and neutrophils.


Assuntos
Monócitos/química , Neutrófilos/química , Oxilipinas/análise , Idoso , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Ácidos Graxos/análise , Ácidos Graxos Insaturados/análise , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
3.
Free Radic Res ; 49(1): 7-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25287525

RESUMO

Exercise-induced changes in p66Shc-dependent signaling pathway are still not fully understood. The p66Shc protein is one of the key players in cell signaling, particularly in response to oxidative stress. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the phosphorylation of p66Shc as well as the induction of mitochondrial and cellular oxidative stress in rat hearts. Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their hearts were removed immediately for experiments. The exercise protocol caused increased levels of the following oxidative stress parameters in cardiac cells: DNA damage, protein carbonyls, and lipid dienes. There was also increased phosphorylation of p66Shc without any alterations in Akt and extracellular signal-regulated kinases. Changes in the ferritin L levels and the L to H subunit ratio were also observed in the exercised hearts compared with the control hearts. Despite increased phosphorylation of p66Shc, no significant increase was observed in either mitochondrial H2O2 release or mitochondrial oxidative stress markers. Regardless of the changes in phosphorylation of p66Shc, the antioxidant enzyme activities (superoxide dismutase and catalase) and anti-apoptotic (Bcl2), and pro-apoptotic (Bax) protein levels were not affected by prolonged swimming. Further studies are required to investigate whether p66Shc phosphorylation is beneficial or detrimental to cardiac cells after exercise cessation.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Natação/fisiologia , Animais , Apoferritinas/metabolismo , Apoptose/fisiologia , Masculino , Miocárdio/metabolismo , Oxirredução , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteína X Associada a bcl-2/metabolismo
4.
Biol Sport ; 30(3): 213-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24744491

RESUMO

Short duration repeated maximal efforts are often used in swimming training to improve lactate tolerance, which gives swimmers the ability to maintain a high work rate for a longer period of time. The aim of the study was to examine the kinematics of swimming and its relation to the changes in blood acid-base status and potassium level. Seven collegiate swimmers, with at least 6 years of training experience, volunteered to participate in the study. The test consisted of 8 x 25 m front crawl performed with maximum effort. The rest period between repetitions was set to five seconds. Blood samples were taken from the fingertip at rest, after warm-up and in the 3rd minute after completion of the test. The swimming was recorded with a video recorder, for later analysis of time, velocity and technique (stroke index). Based on the swimming velocity results, the obtained curve can be divided into rapid decrease of velocity and relatively stable velocities. The breaking point of repetition in swimming velocity was assumed as the swimming velocity threshold and it was highly correlated with the decrease of the blood acid-base status (pH r=0.82, BE r=0.87, HCO3 (-) r=0.76; p<0.05 in all cases). There was no correlation between stroke index or fatigue index and blood acid-base status. Analysis of the swimming speed in the 8 x 25 m test seems to be helpful in evaluation of lactate tolerance (anaerobic capacity) in collegiate swimmers.

5.
Physiol Res ; 61(1): 89-96, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22188105

RESUMO

The aim of this study was to test the hypothesis that allopurinol ingestion modifies the slow component of V(.)O(2) kinetics and changes plasma oxidative stress markers during severe intensity exercise. Six recreationally active male subjects were randomly assigned to receive a single dose of allopurinol (300 mg) or a placebo in a double-blind, placebo-controlled crossover design, with at least 7 days washout period between the two conditions. Two hours following allopurinol or placebo intake, subjects completed a 6-min bout of cycle exercise with the power output corresponding to 75 % V(.)O(2)max. Blood samples were taken prior to commencing the exercise and then 5 minutes upon completion. Allopurinol intake caused increase in resting xanthine and hypoxanthine plasma concentrations, however it did not affect the slow component of oxygen uptake during exercise. Exercise elevated plasma inosine, hypoxanthine, and xanthine. Moreover, exercise induced a decrease in total antioxidant status, and sulfhydryl groups. However, no interaction treatment x time has been observed. Short term severe intensity exercise induces oxidative stress, but xanthine oxidase inhibition does not modify either the kinetics of oxygen consumption or reactive oxygen species overproduction.


Assuntos
Alopurinol/farmacologia , Exercício Físico/fisiologia , Consumo de Oxigênio , Adulto , Alopurinol/administração & dosagem , Biomarcadores/sangue , Método Duplo-Cego , Teste de Esforço , Sequestradores de Radicais Livres/farmacologia , Humanos , Cinética , Masculino , Estresse Oxidativo
6.
J Sports Med Phys Fitness ; 50(1): 52-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20308972

RESUMO

AIM: The ergogenic effect of arginine has been demonstrated in research focusing on its intake before exercise. However, in these studies, the effect of arginine in combination with other various metabolites were assessed. The aim of this study was to determine whether a single oral intake of arginine, without any other compounds, 60 minutes prior to exercise, modifies performance and exercise metabolism during a repeated Wingate anaerobic test. METHODS: Six healthy, active, but not highly trained volunteers participated in the study. Subjects performed three 30s all-out supramaximal Wingate Anaerobic Tests (WAnTs) with 4 minute-interval rest periods between WAnTs. RESULTS: Arginine ingestion before exercise did not influence physical performance. Triple WAnTs resulted in a marked increase in white blood cell (WBC) count, lactate and ammonia concentrations, however there were no differences between arginine and the placebo trials. CONCLUSION: Our data indicated that 2 g of arginine ingested in a single dose, neither induced nitrite/nitrate (NOx) concentrations changes, nor improved physical performance.


Assuntos
Limiar Anaeróbio/fisiologia , Arginina/uso terapêutico , Consumo de Oxigênio/fisiologia , Administração Oral , Análise de Variância , Arginina/administração & dosagem , Estudos Cross-Over , Método Duplo-Cego , Teste de Esforço , Tolerância ao Exercício/efeitos dos fármacos , Humanos , Óxido Nítrico , Descanso , Análise e Desempenho de Tarefas , Fatores de Tempo
7.
J Physiol Pharmacol ; 57 Suppl 10: 115-31, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17242495

RESUMO

Exercise induces extensive generation of reactive oxygen species, which are responsible for tissue damage: enzymes inactivation, lipid peroxidation and single strand breaks in DNA. Defense system against free radicals is consisting of enzymes such as superoxide dismutase, catalase, glutathione peroxidase, and numerous non-enzymatic antioxidants. The study was performed to evaluate the effect of a single bout of submaximal running exercise, on the lymphocyte DNA strand breaks and also to test how supplementation with tempol - a membrane-permeable SOD-mimetic (0.2 mmol/kg/day) influences the eventually evoked damage. Male, Wistar rats were challenged with graded 50 min. running on treadmill at intensity up to 75-85% of predicted VO(2)max. The DNA strand breaks in individual lymphocytes were determined by using a gel electrophoretic technique - "comet" assay. We found substantial lymphocyte DNA damage 60 min. after the exercise. Tempol failed to prevent from oxidative damage in rats challenged with exercise. Moreover tempol by itself induced higher DNA damage than the exercise bout.


Assuntos
Antioxidantes/efeitos adversos , Óxidos N-Cíclicos/efeitos adversos , Quebras de DNA , Linfócitos/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Ensaio Cometa , Teste de Esforço , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Corrida/fisiologia , Marcadores de Spin , Fatores de Tempo
8.
Arch Environ Contam Toxicol ; 42(3): 363-8, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11910466

RESUMO

Hydrazine toxicity is associated with generation of several kinds of free radicals and oxidative stress in cell. Experiments in vivo have demonstrated that oxidative stress could either diminish or increase concentration of vitamin E in some tissues. Thus in the present study we performed experiments to determine whether hydrazine-induced oxidative stress would change the tissue levels of the vitamin. Seven days of hydrazine intoxication led to accumulation of different amounts of vitamin E: 215% in the liver, 118% in the heart, 135% in the spleen, and 100% in the muscle over control value. There were no changes in the level of the vitamin in kidney and pancreas, despite its significant depletion in the serum. In tissue that accumulated vitamin E after hydrazine treatment, an increased of oxidative stress measured by the concentration of lipid-soluble fluorophore was observed. Significant increases of 107%, 46%, 72%, and 58% over control values were observed in the liver, heart, spleen, and muscle, respectively. Rats treated with hydrazine and pharmacological doses of alpha-tocopherol accumulated higher concentrations of vitamin E in all studied tissues compared with the alpha-tocopherol-only treated rats. However, in tissues with elevated levels of fluorophore as liver, heart, spleen, and muscle, the accumulation of vitamin E was 5.03, 4.5, 4.03, and 4.6 times higher than in alpha-tocopherol-treated rats, respectively. Vitamin E concentration was much higher than in kidney and pancreas, where the accumulation was only 2.31 and 2.6 times higher. On the other hand, 3 days of hydrazine treatment did not change either the level of lipid-soluble fluorophore or the level of vitamin E in the liver mitochondria, microsomes, and homogenate. In skeletal muscle vitamin E caused decreased lipofuscin accumulation, and in pancreas vitamin E increased lipofuscin accumulation. Our data indicate that hydrazine is able to modify significantly vitamin E status in different rat tissues.


Assuntos
Carcinógenos/efeitos adversos , Hidrazinas/efeitos adversos , Estresse Oxidativo , Vitamina E/farmacocinética , Animais , Masculino , Ratos , Ratos Wistar , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...